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Abstract. Balancing bike sharing systems is an increasingly important
problem, because of the rising popularity of this mean of transportation.
Bike sharing systems need to be balanced so that bikes (and empty slots
for returning bikes) are available to the customers, thus ensuring an
adequate level of service.
In this paper, we tackle the problem of balancing a real-world bike shar-
ing system (BBSS) by means of a hybrid metaheuristic method. Our main
contributions are: (i) a new Constraint Programming (CP) formulation
for the problem, and (ii) a novel hybrid approach which combines CP
techniques with Ant Colony Optimization (ACO). We then validate our
approach against real world instances from the Vienna Citybike system.

1 Introduction

The idea of bike sharing is to provide bikes to the citizens via stations that are
located all around the city. At each station, bikes are stored in special racks,
such that users can easily pick up or return a bike. However, popular stations
are often emptied or filled very quickly, resulting in annoyed users who cannot
return or retrieve bikes. To avoid this, the stations must be balanced.

Bike sharing systems are balanced by distributing bikes from one station to
another by using specific vehicles. Therefore, balancing the system corresponds
to finding a tour for each vehicle, including loading and unloading instructions
per station such that the resulting system is balanced. Clearly, balancing bike
sharing systems is a difficult task, since it requires solving a vehicle routing
problem combined with distributing single commodities (bikes) according to the
target values at the stations.

In the following, we are consistent with the notation introduced in [1]. We
consider balancing a bike sharing system with S stations S = {1, . . . , S} and a
set of depots D = {S + 1, . . . , S +D}, where each station s ∈ S has a capacity



Cs > 0, a number of available bikes bs and the number of target bikes ts that
denotes the number of bikes that should be at station s after balancing the
system. We use V vehicles V = {1, . . . , V } with capacity cv > 0 and initial load

b̂v ≥ 0 that distribute the bikes within maximal t̂v > 0 time units. The travel
times between stations (and the depots) is given by a travel time matrix ttu,v
where u, v ∈ S ∪ D, which includes also an estimate of the processing times
needed to serve the station, if v ∈ S.

We want to achieve a maximally balanced system where each vehicle travels
on a minimal route. Therefore, in our cost function, we minimize the sum of
the deviations from the target value for each station and include both the travel
distance and the overall activity of each vehicle as a measure of the work effort.

In this paper, we first introduce a novel Constraint Programming (CP) model
that is based on a vehicle routing formulation. Then we show how we can gen-
erally combine CP with Ant Colony Optimization (ACO) by utilizing ACO as
search engine in the CP solving process. The combination is based on the idea
of tackling the problem as a bi-level optimization problem, in which the routing
variables are handled by ACO, whereas the operation variables (which model
the number of bikes to load or unload) are taken care of by CP. Finally, we show
with an experimental evaluation on real-world instances from Citybike Vienna,
that the hybrid ACO+CP approach outperforms the pure CP formulation.

2 Related work

A few approaches for integrating ACO and CP are available from the literature.
The first attempt is due to Meyer and Ernst [2], who apply the method for
solving a Job-Shop Scheduling problem. The proposed procedure employs ACO
to learn the learning strategy used by CP in the tree-search. The solutions found
by CP are fed back to ACO, in order to update its probabilistic model. In this
approach, ACO can be conceived as a master online-learning branching heuristic
aimed at enhancing the performance of a slave CP solver.

A slightly different approach has been taken by Khichane et al. [3, 4]. Their
algorithm works in two phases. At first CP is employed to sample the space of
feasible solutions and the information collected is processed by the ACO pro-
cedure for updating the pheromone trails. In the second phase, the pheromone
information is employed as the value ordering used for CP branching. Unlike the
previous one, this approach uses the learning capabilities of ACO in an offline
fashion. More standard approaches in which CP is used to keep track of the fea-
sibility of the solution constructed by ACO and to reduce the domains through
Constraint Propagation have been used by a number of authors. This idea has
been applied to Job-Shop Scheduling [2] and Car Sequencing [5].

Our approach also shares some similarities with Large Neighborhood Search
(LNS) [6] in that (i) we exploit constraint propagation to reduce the domains of
the variables and (ii) we handle different subsets of variables separately. However,
unlike LNS, our search process includes a learning component. Moreover, our
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separate treatment of variables is motivated by the good performance of ACO on
routing problems, rather than by a need for a better neighborhood exploration.

Balancing of bike sharing systems has become an increasingly studied prob-
lem in the last few years. Benchimol et al. [7] consider the rebalancing as hard
constraint and the objective is to minimize the travel time. They study dif-
ferent approximation algorithms on various instance types and derive different
approximation factors for certain instance properties. Furthermore, they present
a branch-and-cut approach based on an ILP including subtour elimination con-
straints. Contardo et al. [8] consider the dynamic variant of the problem and
present a MIP model and an alternative Dantzig-Wolfe decomposition and Ben-
ders decomposition method to tackle larger instances. Raviv et al. [9] present two
different MILP formulations for the static BBSP and also consider the stochas-
tic and dynamic factors of the demand. In the approach of Chemla et al. [10], a
branch-and-cut approach based on a relaxed MIP model is used in combination
with a tabu search that provides upper bounds. Rainer-Harbach et al. [1] pro-
pose a heuristic approach for the BBSP in which effective routes are calculated
by a variable neighbourhood search (VNS) metaheuristic and the loading in-
structions are computed by a helper algorithm, where they study three different
alternatives (exact and heuristic) as helper algorithms.

Schuijbroek et al. [11] propose a new cluster-first route-second heuristic, in
which the clustering problem simultaneously considers the service level feasi-
bility constraints and approximate routing costs. Furthermore, they present a
constraint programming model for the BBSP that is based on an scheduling for-
mulation of the problem and therefore differs significantly from our VRP-based
formulation.

3 A Constraint Model for BBSS

Our constraint model is based on the constraint model [12] of the classical Vehicle
Routing Problem (VRP) that is concerned with servicing a set of customers with
a fleet of vehicles with cost-optimal tours. The VRP model employs successor
and precessor variables to represent the path of each vehicle on a special graph
GVRP that consists of three different kinds of nodes: first, the starting node for
each vehicle (typically the respective depot), second, the nodes that should be
visited in the tour, and third, the end nodes for each vehicle, again typically
the respective depot. In summary, GVRP contains 2V +S nodes, where V is the
number of vehicles and S is the number of nodes to visit. This graph structure
allows to easily define successor and predecessor variables to represent paths.

We extend the VRP model to allow unvisited stations and to capture loading
instructions on a per-station basis. To achieve this we introduce a dummy vehicle
that (virtually) visits all the unserviced stations. This formulation allows to treat
unvisited stations as a cost component, and makes it easier to ensure that no
operations are scheduled for unvisited stations by constraining the load of the
dummy vehicle to be always zero. This results in an extension of GVRP to graph
GBBSP that contains 2(V + 1) + S nodes, where V + 1 is the number of vehicles
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Fig. 1. Graph encoding of the BBSS problem employed in the routing CP model. The
lower layer shows the original graph, whereas the upper layer shows the encoded graph
in the case of two vehicles, and a solution. The path starting at node 2 and ending at
node 10 (i.e., the dummy vehicle) corresponds to the set of unserved nodes.

including the dummy vehicle. This encoding is illustrated in Figure 1, where
the basic structure is shown on the lower layer, and the encoded GBBSS and a
possible solution is shown on the upper layer. We represent all nodes in GBBSP

in the ordered set U which is defined as follows:

U = { 0, . . . , V, Vs: start nodes
V + 1, station 1
V + 2, station 2
. . . , . . .
V + S, station S
V + S + 1, . . . , 2V + S + 2 } Ve: end nodes

Thus, U first contains the starting nodes (depots) for the V vehicles and the
dummy vehicle, followed by the S regular stations, and finally the end nodes
(depots) for V vehicles and the dummy. Note, that we denote Vs = {0, . . . , V }
the set of start nodes of vehicles and Ve = {V +S+ 1, . . . , 2V +S+ 2} the set of
end nodes of each vehicle. Thus, U = Vs∪S∪Ve. In summary, the tour of vehicle
v ∈ V starts at a depot in Vs, continues to some station nodes in S and ends at
a depot in Ve. In the following, we give a detailed description of our model.

3.1 Variables

The first set of variables are the successor variables that represent the paths by
defining the successor of each node in U . Thus, we have |U| successor variables
succ that range over U , where succi represents the node following node i. In
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Table 1. Variables in the CP Model

name[dimension] domain description

succ [U ] U successor of node i ∈ U
pred [U ] U predecessor of node i ∈ U
vehicle [U ] U vehicle serving node i ∈ U
service [U ] [±max(Cmax, cmax)] removed/added bikes at node i ∈ U
load [U ] [0, cv] load of vehicle v after serving node i ∈ U
time [U ] [0, t̂v] time when vehicle v arrives at node i ∈ U
loadTime [U ] [0, L̂] loading time at node i ∈ U
deviation [S] S deviation from target at station s ∈ S
cost [l, u] overall cost of the solution

addition, we define predecessor variables pred where pred i denotes the node
which comes just before node i in the route. Though redundant, predecessor
variables channelled with successor variables result in stronger propagation [12].
Second, we associate a vehicle to each node i by the variable vehiclei that ranges
over {0, . . . , V }. The loading instructions for each node are captured by operation
variables service where servicei represents the number of bikes that are added
or removed at node i ∈ U and ranges over [±max(Cmax, cmax)] where Cmax

and cmax are respectively the maximum capacities of stations and vehicles. We
also introduce load variables load i, which represent the load of the vehicle after
visiting node i ∈ U . Next come the time-related variables: timei constitutes the
arrival time at which a vehicle arrives at node i. In our problem formulation, the
arrival time also includes the processing time, i.e., the time for loading/unloading
the vehicle at that node. Finally, we use S deviation variables deviation where
deviations represents the deviation from the target values at station s ∈ S after
the balancing tours. Variables are summarized in Tab. 1.

3.2 Constraints

We divide the introduction of the constraints in the model by first stating the es-
sential constraints that are required to comprehensively model the problem, and
then discussing some redundant constraints that will help the solution process.

Essential constraints. We start our description with the routing constraints
for the path: all successors and predecessors take different values.

alldifferent(succ) (1)

alldifferent(pred) (2)

Note that, while these constraints are alone not sufficient to eliminate subtours
from the solutions, according to [12] the presence of a finite time horizon for
vehicles (which is the case for BBSS) ensures the absence of cycles. In the case
of the dummy vehicle, which has no finite horizon, a similar task is carried out
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by a symmetry breaking constraint which enforces an ordering of the nodes in
the route, effectively making subtours impossible to occur.

Then we set the successor-predecessor chain for each regular station

pred succs
= s ∀s ∈ S (3)

succpreds
= s ∀s ∈ S (4)

and the successor-predecessor chain for the start and end nodes where ŝ = V+S
represents the index of first end node in U :

predv = ŝ+ v ∀v ∈ Vs (5)

succŝ+v = v ∀v ∈ Vs (6)

Furthermore, no loops are allowed in the paths, i.e.

pred i 6= i ∀i ∈ U (7)

succi 6= i ∀i ∈ U (8)

We continue with constraints on the vehicle variables. First, we set the respective
vehicle v ∈ Vs for each start- and end-node in the path:

vehiclev = v ∀v ∈ Vs (9)

vehicle ŝ+v = v ∀v ∈ Vs (10)

and second, we set the vehicle-chain over the path variables:

vehiclesucci = vehiclei ∀i ∈ U (11)

vehiclepredi
= vehiclei ∀i ∈ U (12)

For the loading constraints, we first set the initial load b̂v and constrain the
dummy vehicle to be empty

loadv = b̂v ∀v ∈ Vs \ {V } (13)

loadV = 0 (14)

and continue with the loading restrictions along a path

load succi
= load i − servicei ∀i ∈ U (15)

Finally, every vehicle must be completely empty at the end of the route, i.e.:

loadv = 0 ∀v ∈ Ve (16)

Additionally, we constrain the load for vehicles: if station s is not served by the
dummy vehicle (V ), then the service must not be zero, and vice versa:

(vehicles 6= V ) ⇐⇒ (services 6= 0) ∀s ∈ S (17)
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Furthermore, the load of the vehicle after visiting station s ∈ S may not exceed
its capacity c:

loads ≤ cvehicles
∀s ∈ S (18)

Next come the operation constraints. At first we impose operation monotonicity,
i.e., services at station s should either force loading or unloading bikes depending
on the current number of bikes bs and the target value of bikes ts:

services ≤ 0 ∀s∈S : bs > ts (19)

services ≥ 0 ∀s∈S : bs < ts (20)

Notice that a service value of 0 is admissible in both cases since a station could
remain unserved (e.g., because of the time budget constraints). The service at
the start and end nodes (depots) i is zero for all vehicles:

servicei = 0 ∀i ∈ Vs (21)

servicei = 0 ∀i ∈ Ve (22)

Furthermore, the service is limited by the maximal number of bikes in the station,
and we cannot have a negative number of bikes:

bs + services ≤ Cs ∀s ∈ S (23)

bs + services ≥ 0 ∀s ∈ S (24)

Finally, we state the time constraints, where we begin with setting the arrival
time (and processing time) at the start depots to zero

timev = 0 ∀v ∈ Vs (25)

and set the time chain for the successor and predecessor variables:

timev = timepredv
+ ttpredv,v ∀v ∈ S ∪ Ve (26)

timesuccv
= timev + ttv,succv

∀v ∈ Vs ∪ S (27)

At last, the overall working time for each vehicle must be within its time budget:

time ŝ+v ≤ t̂v ∀v ∈ V (28)

This concludes the description of the essential of our CP model for the BBSS
problem. The model can be enhanced by some redundant constraints, that will
take care of some particular substructure of the problem.

Redundant constraints. First, because of the monotonicity constraints (19–
20), the stations requiring the unloading of bikes must be removed from the
successors of the starting depots

succi 6= j ∀i ∈ Vs, j ∈ {s ∈ S|bs < ts} (29)
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Similarly, because of constraint (16), which requires empty vehicles at the end
of the path, the stations requiring the loading of bikes must be removed from
the predecessors of the ending depots

pred i 6= j ∀i ∈ Ve, j ∈ {s ∈ S|bs > ts} (30)

Finally, an early failure detection of the working time constraint (28) is possible.
If the working time of the current partial solution plus the time to reach the
final depot exceeds the total time budget, then the solution can’t be feasible.

timei + tti,ŝ+vehiclei ≤ t̂vehiclei ∀i ∈ S (31)

Cost function. The cost function of the problem is a hierarchical one, and
comprises two different major components: the level of unbalancing and the
working effort.

The unbalancing component is defined in terms of the deviation variables,
which are set to be the absolute value of the deviation from the target number
of bikes at each station after service has been performed, i.e.:

deviations = |bs + services − ts| ∀s ∈ S (32)

The working effort is the sum of the total traveling time (i.e., the sum of the
times at which each vehicle reaches its ending depot) plus the overall activity
performed throughout the path (i.e., the absolute value of the service).

The cost function is the weighted aggregation of the two components, i.e.:

cost = w1

∑
s∈S

deviations + w2(
∑
v∈V

time ŝ+v +
∑
s∈S
|services|) (33)

where w1 = 1 and w2 = 10−5, so that the satisfaction of the first component
prevails over the second one. This cost function, defined in [1], is the scalarization
of a multi-objective problem in nature, thus some points in the Pareto optimal
set are neglected by construction. The main reason for this choice was the need to
compare with the current bests, moreover, to the best of our knowledge, research
in multi-objective propagation techniques is still at an early stage.

4 An ACO+CP Hybrid

Ant Colony Optimization [13] is an iterative constructive metaheuristic, inspired
by the ant foraging behavior. The ACO construction process is driven by a
probabilistic model, based on pheromone trails, which are dynamically adjusted
by a learning mechanism. Constraint Programming(CP) [14] is an exact solving
approach where a constraint model is solved using a customized search strategy
interleaved with strong filtering (propagation) of the variables’ domains.

The hybridization of ACO and CP is described in Algorithm 1 and is, in its
essence, a bi-level optimization process. The basic idea is to partition the set
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Algorithm 1: ACO + CP

input : X = XAnts ∪XCP , a set of integer variables partitioned into variables
dealt with ACO and CP, respectively
C, a set of constraints
F , a cost function

1 initialize all pheromone trails to τstart;
2 g ← 0;
3 repeat
4 for k ∈ {1, . . . , n} do
5 Ak ← ∅;
6 repeat
7 select a variable xi ∈ XAnts, so that xi 6∈ var(Ak), and a value

j ∈ Dj according to the pheromone trail τij (and possibly the
heuristic information ηij);

8 add {xi := j} to Ak;
9 if Propagate(Ak, C) = Failure then

10 Backtrack(Ak);

11 until var(Ak) = XAnts;
12 TreeSearch(X, C,F);
13 update pheromone trails using {A1, . . . ,An} and F ;
14 g ← g + 1;

15 until TerminateSearch(g,Ai, time);

X of problem variables into two sets XAnts and XCP . The values for the XAnts

variables are dealt with by an ACO procedure and once they are set, a tree-search
(line 12) finds the values for the remaining variables. The tree-search procedure
can be either a branch-and-bound algorithm (exploiting the information of the
cost function F) or a (possibly) faster depth-first-search if we are satisfied with
a good assignment of the XCP variables.

Once all n ants have found a solution, the pheromone trails are updated ac-
cording to the solution components and their cost value. The overall search is
typically stopped at a given timeout. It is worth noticing that, in the proposed
approach, the interaction between ACO and CP is two-way. The pruning capa-
bilities of constraint propagation are employed both to restrict the number of
alternatives the ants must face at each choice point (see line 7), and as a mech-
anism for early failure detection (see line 9). On the other hand, ACO helps CP
converging faster, by avoiding search paths that lead to unfeasible solutions.

4.1 ACO+CP for BBSS

In our CP model for the BBSS problem, there is a natural partition of the
decision variables into two families, i.e., routing and operation variables.

Handling of routing variables. The first set of variables, succi, is handled
very naturally by ACO, which has been shown to be particularly effective in
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solving routing problems. In our approach, ACO is embodied by a two-phase
branching strategy which takes care both of variable and value selection. This
process is illustrated in Figure 4.1.

Variable selection. The first variable to be selected, according to the heuristic,
is the succ of the first vehicle starting depot (Fig. 2(a)). As for the next variable
to assign, we always choose the one indicated by the value of the last assigned
variable, i.e., the succ of the last assigned node (Fig. 2(b)). By following this
heuristic, we enforce the completion of existing paths first. If the successor of the
last assigned node is a final depot (Fig. 2(c)), then we cannot proceed further on
the current path, and we start a new one by assigning the successor of the next
starting depot. Once the paths of all vehicles are set, the remaining unserved
nodes will be assigned to the dummy vehicle (Fig. 2(d)).

Value selection. Once the next variable to assign is chosen, all the values in its
current domain are considered as candidates. Note that, in this, we are in fact
exploiting problem-specific knowledge, as the domain of a variable is, at any
time, determined by the constraint propagations activated earlier in the search.

The next step is where ACO comes into play. For our approach we have chosen
a popular ACO variant known as the hyper-cube framework for ACO (HC-ACO)
[15]. As most other ACO approaches, HC-ACO maintains a pheromone table in
which each 〈Xi, vj〉 (variable, value) pair has a corresponding τi,j pheromone
value indicating the desirability of value vj for the variable Xi. The advantage
of HC-ACO over other ACO variants, is that the update rule for pheromones
involves a normalization factor which makes the approach independent of the
scale of the cost function and doesn’t require to enforce a [τmin, τmax] interval.

In line with the majority of ACO variants, our value selection heuristic is
stochastic, with the probability of choosing a specific value being proportional
to the corresponding τ -value. In particular, the probability P (Xi, vj) of choosing
the value vj for the variable Xi is

P (Xi, vj) =
τi,j∑

vk∈dom(Xi)
τi,k

(34)

Handling of operation variables. The operation variables are assigned through
depth-first tree-search, based on deviation variables, which are the main compo-
nent of our cost function. This way, employing a min value heuristic, lower cost
solutions are produced before bad ones.

While other choices are possible, e.g. a full exploration of the tree by branch-
and-bound, in this context we aim at finding quickly feasible solutions, so that
they can be used for learning. The rationale behind this choice is that decisions
taken towards the root of the search tree have a greater impact than the ones
taken towards the leaves, and τ -updates are the only way to improve our ACO-
based value selection heuristic.
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(d) All remaining nodes are assigned to the
dummy vehicle (i.e., they are left unserved).

Fig. 2. Illustration of the graph traversal performed by one ant.

τ update. After all n ants have produced a feasible solution (we call this set
of solutions Supd), their cost function value is used to make an update to the
pheromone table. The update rule is the one described in [15] (adapted to be
consistent with our conventions)

τi,j = (1− ρ) · τi,j + ρ ·
∑

s∈Supd

F (s)∑
s′∈Supd

F (s′)
(35)

where ρ is a learning rate that controls how fast the pheromones adapt to make
the new solutions more likely and F is a quality function that in our case is
defined as F (s) = 1/cost(s). Note that all pheromones are also subject to a
multiplicative evaporation of 1− ρ.

5 Experimental Analysis

In this section we report and discuss the experimental analysis of the algorithms.
The experimental setting is as follows.

For fair comparison, both the CP and the ACO+CP algorithms were im-
plemented in Gecode (v 3.7.3) [16], the ACO variant consisting in specialized
branching and search strategies.

All pheromones were initially set to τmax = 1. The ρ parameter and the
number of ants have been tuned by running an F-Race [17] with a confidence
level of 0.95 over a pool of 210 benchmark instances from Citybike Vienna. Each
instance, featuring a given number of stations, was considered with different
number of vehicles (V ∈ {1, 2, 3, 5}) and time budgets (t̂ ∈ {120, 240, 480}).
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Fig. 3. Comparison between ACO+CP (dark, solid lines) and CP (light, thin lines) on
a problem instance with 30 stations. The columns of the graph matrix represent the
vehicle time budget and the rows represent the number of available vehicles.

Moreover, the algorithms were allowed to run for three different timeouts (30,
60, 120 seconds), totaling 7560 problems.

We tuned the number of ants n ∈ {5, 10, 15, 20} and the learning rate ρ
together, as we expected an interaction between the two parameters. The 8 can-
didate values for ρ were instead sampled from the low-discrepancy Hammersley
point set in [0.4, 0.8]. This interval was chosen according to a preliminary tun-
ing of the parameters, with ρ ∈ [0, 1] and 32 samples. The result of the tuning
process is that, for the considered set of problems, the best setup involves 5 ants
and ρ = 0.65. All the experiments were executed on an Ubuntu Linux 12.04
machine with 16 Intel R© Xeon R© CPU E5-2660 (2.20GHz) cores.

Comparison between CP and ACO+CP. The main goal of this comparison
is to understand if a dynamic branching strategy based on ACO can indeed
outperform a static branching strategy. Figure 3 shows the results on an instance
from the Citybike Vienna benchmark set featuring 30 stations. The choice of this
instance has been driven by the fact that a time budget of 2 minutes was too
low for CP to obtain even a single solution on larger instances.
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The results of the comparison show that ACO+CP clearly outperforms the
pure CP approach. In fact, the CP solver is declared significantly inferior by the
F-Race procedure after just 15 iterations. The superior behavior of ACO+CP is
confirmed also from the analysis reported in Figure 3, for the variants of a single
problem instance with 30 stations. Note that the ACO+CP data is based on 5
repetitions of the same experiment, as the process is intrinsically stochastic.

It is possible to see that the cost values achieved by ACO+CP are always
lower than those of CP and in one case (namely time budget 480 and 5 vehicles)
CP is even not able to find a solution within the granted timeout despite the
fact that it is somehow a loosely constrained instance.

Comparison with other methods. In this second experiment, we compare
ACO+CP and CP, with state-of-the-art results of [1], who solved the same set of
instances by a Mixed Integer Linear Programming solver (MILP) and a Variable
Neighborhood Search (VNS) strategy. The results of the comparison are reported
in Table 2, where we compare against the best of the three different VNS strate-
gies described in [1]. The results reported are averages across instances with the
same number of stations.

In this respect, the results are still unsatisfactory, since the best VNS ap-
proach of [1] is outperforming our ACO+CP on almost all instances. Neverthe-
less, our ACO+CP is able to do better than the MIP approach for mid- and
large-sized instances.

6 Conclusions and Future Work

In this paper we tackle the problem of balancing the Citybike Vienna bike sharing
system by means of a hybrid ACO+CP approach. The contributions of the paper
are twofold.

First, we devise a novel CP formulation for the problem based on an extension
of the classical CP vehicle routing model [12]. Up to the best of our knowledge,
this is, together with [11], one of the two available CP formulations. Second, we
propose a novel hybrid ACO+CP approach with the aim of improving the results
of the pure CP solver. The proposed hybridization approach is quite general and
can be applied also to other problems having a similar bi-level optimization
structure. Moreover, the hybrid approach is implemented as an extension of the
Gecode CP system and requires a small customization for handling different
problem models.

From our experiments, it is clear that the ACO+CP approach outperforms
the standard branch-and-bound CP solution method. However, despite these
promising initial results, the performances of ACO+CP are still not as good as
those achieved by the state-of-the-art metaheuristic approaches for this problem.

Among the alternatives we want to explore, there is the validation of the
proposed ACO+CP approach on other bi-level optimization problems such as the
integrated vehicle routing and packing problem. Moreover, we plan to investigate
other methods for combining metaheuristics and CP, e.g., LNS.
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Table 2. Comparison of our CP and ACO+CP solvers with the MIP and the best
VNS approach of [1]

Instance CP ACO+CP MIP [1] VNS [1]

S V t̂ obj30 obj60 obj120 obj30 obj60 obj120 ub lb time obj time

10 1 120 28.3477 28.3477 28.3477 28.5344 28.7477 28.5478 28.3477 28.3477 4 28.3477 2
10 1 240 14.0908 11.4915 9.5589 5.2276 4.7609 4.4810 4.2942 0.0424 3600 4.2941 10
10 1 480 14.8247 13.2922 9.8942 0.4322 0.9120 0.6052 0.0320 0.0276 3600 0.0317 17
10 2 120 10.2266 10.2266 10.2266 10.4001 10.6667 10.4268 9.8269 9.4768 911 9.9601 3
10 2 240 5.3652 4.6987 2.7662 0.4342 0.9274 0.1009 0.0340 0.0322 856 0.0339 19
10 2 480 5.3637 4.8971 3.2976 0.4854 0.4586 0.8584 0.0317 0.0313 1245 0.0317 15
20 2 120 72.4942 70.4279 68.7614 64.2558 62.9492 61.4561 5.8294 26.9012 3600 55.3628 8
20 2 240 74.2422 72.3754 71.5087 18.3904 17.3372 15.3907 19.7884 0.0383 3600 4.2575 58
20 2 480 74.1093 72.7093 72.5756 3.9748 2.7743 2.8943 1.8906 0.0403 3600 0.0615 142
20 3 120 67.5712 64.1051 61.5053 48.4287 47.1622 45.0557 37.3759 1.4770 3600 31.7763 13
20 3 240 74.3813 74.1811 74.1143 7.5511 5.8310 4.7641 6.2083 0.0401 3600 0.0650 65
20 3 480 74.3814 74.1811 74.1144 4.5878 2.5211 2.5874 13.4191 0.0316 3600 0.0614 114
30 2 120 127.5604 126.4939 125.5608 122.4552 119.2022 118.0823 106.9631 56.3908 3600 104.7633 12
30 2 240 117.2520 116.5857 116.3188 75.7637 73.2173 70.4309 74.9886 0.0487 3600 34.6608 109
30 2 480 101.8650 101.8650 101.4652 13.5173 11.1311 9.3847 69.8069 0.0432 3600 0.0925 491
30 3 120 – 117.7058 115.6393 107.7879 105.1748 102.0554 90.4419 16.6454 3600 78.1773 21
30 3 240 104.6052 104.4719 104.0054 46.0564 42.7502 40.5769 61.6715 0.0461 3600 7.1523 191
30 3 480 100.7422 100.6089 100.6089 – 10.7450 8.5595 175.4000 0.0015 3600 0.0925 399
60 3 120 – – – 307.8148 304.4283 300.2154 274.3101 157.7350 3600 253.8462 45
60 3 240 – – – 245.3374 238.1644 233.6585 370.2000 0.0000 3600 126.8282 521
60 3 480 205.8871 205.8871 205.8870 127.2744 122.7286 117.6223 – – 3600 6.7758 3600
60 5 120 – – – 283.0537 278.0540 272.8145 289.3111 34.9784 3600 196.6749 99
60 5 240 – – – 184.7371 179.0572 173.6710 370.2000 0.0000 3600 41.6161 1556
60 5 480 – – – – – – – – 3600 0.1902 3600
90 3 120 – – – 511.8807 507.2943 504.2013 492.2319 290.8990 3600 441.6473 82
90 3 240 – – – 451.7232 445.4705 438.2044 566.2667 0.0000 3600 294.5646 985
90 3 480 – – – 334.6610 326.4350 319.5826 – – 3600 101.1221 3600
90 5 120 – – – 490.3193 480.7739 473.9345 566.2667 0.0000 3600 376.1432 169
90 5 240 – – – 393.4433 383.3375 375.5915 – – 3600 174.3566 3304
90 5 480 – – – 213.3140 202.3017 192.3832 – – 3600 1.6855 3600
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